本地事务与分布式事务

admin
2022-04-01 / 0 评论 / 49 阅读 / 正在检测是否收录...

本地事务

一、事务的基本性质

数据库事务的几个特性:原子性(Atomicity )、一致性( Consistency )、隔离性或独立性( Isolation)
和持久性(Durabilily),简称就是ACID;

  1. 原子性:一系列的操作整体不可拆分,要么同时成功,要么同时失败
  2. 一致性:数据在事务的前后,业务整体一致。(A向B转账,转账前后AB总金额一致)
  3. 隔离性:事务之间互相隔离。
  4. 持久性:一旦事务成功,数据一定会落盘在数据库。

单体应用中,我们多个业务操作使用同一条连接操作不同的数据表,一旦有异常,我们可以很容易的整体回滚;

Business:我们具体的业务代码
Storage:库存业务代码;扣库存
Order:订单业务代码;保存订单
Account:账号业务代码;减账户余额
比如买东西业务,扣库存,下订单,账户扣款,是一个整体;必须同时成功或者失败
一个事务开始,代表以下的所有操作都在同一个连接里面;

二、事务的隔离级别

  1. READ UNCOMMITTED(读未提交)

该隔离级别的事务会读到其它未提交事务的数据,此现象也称之为脏读。

  1. READ COMMITTED(读提交)

一个事务可以读取另一个已提交的事务,多次读取会造成不一样的结果,此现象称为不可重
复读问题,Oracle 和SQL Server 的默认隔离级别。

  1. REPEATABLE READ(可重复读)

该隔离级别是MySQL 默认的隔离级别,在同一个事务里,select 的结果是事务开始时时间
点的状态,因此,同样的select 操作读到的结果会是一致的,但是,会有幻读现象。MySQL
的InnoDB 引擎可以通过next-key locks 机制(行锁的算法)来避免幻读。

  1. SERIALIZABLE(序列化)

在该隔离级别下事务都是串行顺序执行的,MySQL 数据库的InnoDB 引擎会给读操作隐式
加一把读共享锁,从而避免了脏读、不可重读复读和幻读问题。

三、事务的传播行为

  1. PROPAGATION_REQUIRED

如果当前没有事务,就创建一个新事务,如果当前存在事务,就加入该事务,该设置是最常用的设置。

  1. PROPAGATION_SUPPORTS

支持当前事务,如果当前存在事务,就加入该事务,如果当前不存在事务,就以非事务执行。

  1. PROPAGATION_MANDATORY

支持当前事务,如果当前存在事务,就加入该事务,如果当前不存在事务,就抛出异常。

  1. PROPAGATION_REQUIRES_NEW

创建新事务,无论当前存不存在事务,都创建新事务。

  1. PROPAGATION_NOT_SUPPORTED

以非事务方式执行操作,如果当前存在事务,就把当前事务挂起。

  1. PROPAGATION_NEVER

以非事务方式执行,如果当前存在事务,则抛出异常。

  1. PROPAGATION_NESTED

如果当前存在事务,则在嵌套事务内执行。如果当前没有事务,则执行与PROPAGATION_REQUIRED 类似的操作。

四、SpringBoot 事务关键点

  1. 事务的自动配置

TransactionAutoConfiguration

  1. 事务的坑

在同一个类里面,编写两个方法,内部调用的时候,会导致事务设置失效。原因是没有用到
代理对象的缘故。

  1. 解决

0)、导入spring-boot-starter-aop
1)、@EnableTransactionManagement(proxyTargetClass = true)
2)、@EnableAspectJAutoProxy(exposeProxy=true)
3)、AopContext.currentProxy() 调用方法


分布式事务

一、为什么有分布式事务

分布式系统经常出现的异常
机器宕机、网络异常、消息丢失、消息乱序、数据错误、不可靠的TCP、存储数据丢失...

二、CAP 定理与BASE 理论

1、CAP 定理

CAP 原则又称CAP 定理,指的是在一个分布式系统中

  1. 一致性(Consistency)

在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)

  1. 可用性(Availability)

在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)

  1. 分区容错性(Partition tolerance)

大多数分布式系统都分布在多个子网络。每个子网络就叫做一个区(partition)。分区容错的意思是,区间通信可能失败。比如,一台服务器放在中国,另一台服务器放在美国,这就是两个区,它们之间可能无法通信。

CAP 原则指的是,这三个要素最多只能同时实现两点,不可能三者兼顾

一般来说,分区容错无法避免,因此可以认为CAP 的P 总是成立。CAP 定理告诉我们,剩下的C 和A 无法同时做到。

分布式系统中实现一致性的raft 算法、paxos http://thesecretlivesofdata.com/raft/

面临的问题

对于多数大型互联网应用的场景,主机众多、部署分散,而且现在的集群规模越来越大,所以节点故障、网络故障是常态,而且要保证服务可用性达到99.99999%(N 个9),即保证P 和A,舍弃C。

2、BASE 理论

是对CAP 理论的延伸,思想是即使无法做到强一致性(CAP 的一致性就是强一致性),但可以采用适当的采取弱一致性,即最终一致性。

什么是BASE :

  1. 基本可用(Basically Available)

基本可用是指分布式系统在出现故障的时候,允许损失部分可用性(例如响应时间、功能上的可用性),允许损失部分可用性。需要注意的是,基本可用绝不等价于系统不可用。

    • 响应时间上的损失:正常情况下搜索引擎需要在0.5 秒之内返回给用户相应的查询结果,但由于出现故障(比如系统部分机房发生断电或断网故障),查询结果的响应时间增加到了1~2 秒。
    • 功能上的损失:购物网站在购物高峰(如双十一)时,为了保护系统的稳定性,部分消费者可能会被引导到一个降级页面。
    1. 软状态( Soft State)

    软状态是指允许系统存在中间状态,而该中间状态不会影响系统整体可用性。分布式存储中一般一份数据会有多个副本,允许不同副本同步的延时就是软状态的体现。mysql replication 的异步复制也是一种体现。

    1. 最终一致性( Eventual Consistency)

    最终一致性是指系统中的所有数据副本经过一定时间后,最终能够达到一致的状态。弱一致性和强一致性相反,最终一致性是弱一致性的一种特殊情况。

    强一致性、弱一致性、最终一致性

    从客户端角度,多进程并发访问时,更新过的数据在不同进程如何获取的不同策略,决定了不同的一致性。对于关系型数据库,要求更新过的数据能被后续的访问都能看到,这是强一致性。如果能容忍后续的部分或者全部访问不到,则是弱一致性。如果经过一段时间后要求
    能访问到更新后的数据,则是最终一致性。

    3、分布式事务几种方案

    2PC 模式

    数据库支持的2PC【2 phase commit 二阶提交】,又叫做XA Transactions。MySQL 从5.5 版本开始支持,SQL Server 2005 开始支持,Oracle 7 开始支持。其中,XA 是一个两阶段提交协议,该协议分为以下两个阶段:

    第一阶段:事务协调器要求每个涉及到事务的数据库预提交(precommit)此操作,并反映是否可以提交。
    第二阶段:事务协调器要求每个数据库提交数据。其中,如果有任何一个数据库否决此次提交,那么所有数据库都会被要求回滚它们在此事务中的那部分信息。

    • XA 协议比较简单,而且一旦商业数据库实现了XA 协议,使用分布式事务的成本也比较低。
    • XA 性能不理想,特别是在交易下单链路,往往并发量很高,XA 无法满足高并发场景
    • XA 目前在商业数据库支持的比较理想,在mysql 数据库中支持的不太理想,mysql 的XA 实现,没有记录prepare 阶段日志,主备切换回导致主库与备库数据不一致。
    • 许多nosql 也没有支持XA,这让XA 的应用场景变得非常狭隘。
    • 也有3PC,引入了超时机制(无论协调者还是参与者,在向对方发送请求后,若长时间未收到回应则做出相应处理)。

    柔性事务-TCC 事务补偿型方案

    刚性事务:遵循ACID 原则,强一致性。
    柔性事务:遵循BASE 理论,最终一致性;
    与刚性事务不同,柔性事务允许一定时间内,不同节点的数据不一致,但要求最终一致。

    一阶段prepare 行为:调用自定义的prepare 逻辑。
    二阶段commit 行为:调用自定义的commit 逻辑。
    二阶段rollback 行为:调用自定义的rollback 逻辑。

    所谓TCC 模式,是指支持把自定义的分支事务纳入到全局事务的管理中。

    柔性事务-最大努力通知型方案

    按规律进行通知,不保证数据一定能通知成功,但会提供可查询操作接口进行核对。这种方案主要用在与第三方系统通讯时,比如:调用微信或支付宝支付后的支付结果通知。这种方案也是结合MQ 进行实现,例如:通过MQ 发送http 请求,设置最大通知次数。达到通知次数后即不再通知。

    案例:银行通知、商户通知等(各大交易业务平台间的商户通知:多次通知、查询校对、对账文件),支付宝的支付成功异步回调。

    柔性事务-可靠消息+最终一致性方案(异步确保型)

    实现:业务处理服务在业务事务提交之前,向实时消息服务请求发送消息,实时消息服务只记录消息数据,而不是真正的发送。业务处理服务在业务事务提交之后,向实时消息服务确认发送。只有在得到确认发送指令后,实时消息服务才会真正发送。

    防止消息丢失:

    /**
    * 1、做好消息确认机制(pulisher,consumer【手动ack】)
    * 2、每一个发送的消息都在数据库做好记录。定期将失败的消息再次发送一
    遍
    */
    CREATE TABLE `mq_message` (
    `message_id` char(32) NOT NULL,
    `content` text,
    `to_exchane` varchar(255) DEFAULT NULL,
    `routing_key` varchar(255) DEFAULT NULL,
    `class_type` varchar(255) DEFAULT NULL,
    `message_status` int(1) DEFAULT '0' COMMENT '0-新建1-已发送2-错误抵达3-已抵达',
    `create_time` datetime DEFAULT NULL,
    `update_time` datetime DEFAULT NULL,
    PRIMARY KEY (`message_id`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
    4

    评论 (0)

    取消