首页
关于
友链
Search
1
wlop 4K 壁纸 4k8k 动态 壁纸
1,553 阅读
2
Nacos持久化MySQL问题-解决方案
982 阅读
3
Docker搭建Typecho博客
771 阅读
4
滑动时间窗口算法
766 阅读
5
ChatGPT注册 OpenAI's services are not available in your country 解决方法
734 阅读
生活
解决方案
JAVA基础
JVM
多线程
开源框架
数据库
前端
分布式
框架整合
中间件
容器部署
设计模式
数据结构与算法
安全
开发工具
百度网盘
天翼网盘
阿里网盘
登录
Search
标签搜索
java
javase
docker
java8
springboot
thread
spring
分布式
mysql
锁
linux
redis
源码
typecho
centos
git
map
RabbitMQ
lambda
stream
少年
累计撰写
189
篇文章
累计收到
26
条评论
首页
栏目
生活
解决方案
JAVA基础
JVM
多线程
开源框架
数据库
前端
分布式
框架整合
中间件
容器部署
设计模式
数据结构与算法
安全
开发工具
百度网盘
天翼网盘
阿里网盘
页面
关于
友链
搜索到
1
篇与
的结果
2022-04-26
ReentrantLock、StampedLock、ReentrantReadWriteLock、Condition
锁分为Synchronized和锁Lock。ReentrantLock与锁ReentrantLock(可重入锁)与Synchronized(同步锁)的区别:可重入性:区别不大,都是通过计数器,当计数器下降为0时,锁释放。锁的实现:Synchronized依赖JVM,ReentrantLock基于JDK实现。(类似Synchronized是操作系统实现,ReentrantLock是敲代码实现),ReentrantLock可通过看源码明白实现,Synchronized依赖JVM就看不到实现原理。性能的区别:优化之前Synchronized比ReentrantLock性能差很多,优化后Synchronized引入偏向锁、轻量级锁也就是自旋锁后,2者性能差不多了。差不多时,官方推荐Synchronized。功能的区别:Synchronized的使用方便简洁,隐式获取锁释放锁,ReentrantLock需要手动获取锁,释放锁,如果忘记容易出现死锁,所以最好再finally中释放锁。锁的颗粒度和灵活度很明显ReentrantLock优于Synchronized。ReentrantLock独有的功能:ReentrantLock可指定公平锁、非公平锁,而Synchronized只能时非公平锁。公平锁:先等待的先获取锁,反之亦然。提供了一个Condition类,可以分组唤醒需要唤醒的线程,Synchronized要么随机唤醒,要么全部唤醒。提供能够中断等待锁的线程的机制,lock.lockInterruptibly(),lockInterruptibly是一种自旋锁,通过循环来调用CAS来加锁,性能比较好,就是因为不会进入内核阻塞状态。使用场景:必须实现上面3个功能时,就必须用了。代码示例一ReentrantLock实现累加,注意与synchronized的不用用法package com.yanxizhu.demo.concurrency.lock; import lombok.extern.slf4j.Slf4j; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * @description: ReentrantLock锁实现计数,注意使用synchroized怎么实现的 * @author: <a href="mailto:batis@foxmail.com">清风</a> * @date: 2022/4/25 23:09 * @version: 1.0 */ @Slf4j public class ReentrantLockDemo { //定义锁 private static Lock lock = new ReentrantLock(); //定义锁用户数 private static final int totalThread = 5000; //定义并发线程数 private static final int concurrentThread = 200; //定义总和 private static int count = 0; public static void main(String[] args) throws Exception{ //定义线程池 ExecutorService executorService = Executors.newCachedThreadPool(); //定义信号量 final Semaphore semaphore = new Semaphore(concurrentThread); //定义闭锁 final CountDownLatch countDownLatch = new CountDownLatch(totalThread); for (int i = 0; i < totalThread; i++) { executorService.execute(() -> { try { semaphore.acquire(); sum(); semaphore.release(); } catch (InterruptedException e) { log.error("错误信息:【{}】", e.getMessage()); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); log.info("最后累加结果Count={}", count); } //通过ReentrantLock锁实现 public static void sum() { lock.lock(); count++; lock.unlock(); } //累加求和(synchronized锁实现) // public synchronized static void sum() { // count ++; // } }输出结果:23:21:08.549 [main] INFO com.yanxizhu.demo.concurrency.lock.ReentrantLockDemo - 最后累加结果Count=5000源码查看public ReentrantLock() { sync = new NonfairSync(); }默认传入的是不公平的锁。 public ReentrantLock(boolean fair) { sync = fair ? new FairSync() : new NonfairSync(); }可以传入ture或false决定是否是公平锁。需要注意的方法tryLok: public boolean tryLock() { return sync.nonfairTryAcquire(1); }本质是仅在调用的时候,锁定未被另一个线程持有的情况下,才锁定。参数同样可以传入超时时间和单位,保持线程时间多久可以锁定。提供了丰富的方法,可以参考官方文档,ReentrantReadWriteLock没有任何读写锁的时候,才可以取得写入锁。可实现悲观读取。读多写少时,可能会导致写进入饥饿。注意是悲观锁,当有读时,写可能一直执行不了,有写的时候,不能读。代码示例package com.yanxizhu.demo.concurrency.lock; import java.util.Map; import java.util.Set; import java.util.TreeMap; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantReadWriteLock; /** * @description: ReentrantReadWriteLock 读锁、写锁的使用 * 注意: ReentrantReadWriteLock时悲观锁,读的时候不能写,写的时候不能读,互斥的 * @author: <a href="mailto:batis@foxmail.com">清风</a> * @date: 2022/4/25 23:40 * @version: 1.0 */ public class ReentrantReadWriteLockDemo { //定义读写锁 private static final ReentrantReadWriteLock lock = new ReentrantReadWriteLock(); //获取读锁 private static final Lock readLock = lock.readLock(); //获取写锁 private static final Lock writeLock = lock.writeLock(); private static Map<String, Data> map = new TreeMap<>(); public class Data{ } //读map中的数据 public Data getValue(String key) { readLock.lock(); try{ return map.get(key); }catch (Exception e) { }finally { readLock.unlock(); } return null; } //读取map中所有的key public Set<String> getKeys() { readLock.lock(); try{ return map.keySet(); }catch (Exception e) { }finally { readLock.unlock(); } return null; } //向map中写入数据 public void writeDate(String key, Data value) { writeLock.lock(); try{ map.put(key, value); }catch (Exception e){ }finally { writeLock.unlock(); } } }StampedLockStampedLock控制锁,有3种模式。写、读、是由锁和版本控制,就是这里的。读分为悲观读和乐观读。官方代码示例package com.yanxizhu.demo.concurrency.lock; import java.util.concurrent.locks.StampedLock; public class StampedLockDemo { class Point { private double x, y; private final StampedLock sl = new StampedLock(); void move(double deltaX, double deltaY) { // an exclusively locked method long stamp = sl.writeLock(); try { x += deltaX; y += deltaY; } finally { sl.unlockWrite(stamp); } } //下面看看乐观读锁案例 double distanceFromOrigin() { // A read-only method long stamp = sl.tryOptimisticRead(); //获得一个乐观读锁 double currentX = x, currentY = y; //将两个字段读入本地局部变量 if (!sl.validate(stamp)) { //检查发出乐观读锁后同时是否有其他写锁发生? stamp = sl.readLock(); //如果没有,我们再次获得一个读悲观锁 try { currentX = x; // 将两个字段读入本地局部变量 currentY = y; // 将两个字段读入本地局部变量 } finally { sl.unlockRead(stamp); } } return Math.sqrt(currentX * currentX + currentY * currentY); } //下面是悲观读锁案例 void moveIfAtOrigin(double newX, double newY) { // upgrade // Could instead start with optimistic, not read mode long stamp = sl.readLock(); try { while (x == 0.0 && y == 0.0) { //循环,检查当前状态是否符合 long ws = sl.tryConvertToWriteLock(stamp); //将读锁转为写锁 if (ws != 0L) { //这是确认转为写锁是否成功 stamp = ws; //如果成功 替换票据 x = newX; //进行状态改变 y = newY; //进行状态改变 break; } else { //如果不能成功转换为写锁 sl.unlockRead(stamp); //我们显式释放读锁 stamp = sl.writeLock(); //显式直接进行写锁 然后再通过循环再试 } } } finally { sl.unlock(stamp); //释放读锁或写锁 } } } }示例代码二累加求和package com.yanxizhu.demo.concurrency.lock; import lombok.extern.slf4j.Slf4j; import javax.annotation.concurrent.ThreadSafe; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; import java.util.concurrent.locks.StampedLock; @Slf4j @ThreadSafe public class StampedLockDemo2 { // 请求总数 public static int clientTotal = 5000; // 同时并发执行的线程数 public static int threadTotal = 200; public static int count = 0; private final static StampedLock lock = new StampedLock(); public static void main(String[] args) throws Exception { ExecutorService executorService = Executors.newCachedThreadPool(); final Semaphore semaphore = new Semaphore(threadTotal); final CountDownLatch countDownLatch = new CountDownLatch(clientTotal); for (int i = 0; i < clientTotal ; i++) { executorService.execute(() -> { try { semaphore.acquire(); add(); semaphore.release(); } catch (Exception e) { log.error("exception", e); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); log.info("count:{}", count); } private static void add() { //这里加锁,返回值 long stamp = lock.writeLock(); try { count++; } finally { //释放锁,带上加锁的返回值 lock.unlock(stamp); } } }输出结果:5000,线程安全,并发性好。Condition代码示例package com.yanxizhu.demo.concurrency.lock; import lombok.extern.slf4j.Slf4j; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; /** * ReentrantLock中另一个队列,Condition的使用 */ @Slf4j public class ConditionDemo { public static void main(String[] args) { ReentrantLock reentrantLock = new ReentrantLock(); Condition condition = reentrantLock.newCondition(); new Thread(() -> { try { reentrantLock.lock(); log.info("wait signal"); // 1 condition.await(); } catch (InterruptedException e) { e.printStackTrace(); } log.info("get signal"); // 4 reentrantLock.unlock(); }).start(); new Thread(() -> { reentrantLock.lock(); log.info("get lock"); // 2 try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } condition.signalAll(); log.info("send signal ~ "); // 3 reentrantLock.unlock(); }).start(); } }
2022年04月26日
209 阅读
0 评论
4 点赞