首页
关于
友链
Search
1
wlop 4K 壁纸 4k8k 动态 壁纸
1,830 阅读
2
Nacos持久化MySQL问题-解决方案
1,149 阅读
3
滑动时间窗口算法
1,007 阅读
4
Docker搭建Typecho博客
970 阅读
5
ChatGPT注册 OpenAI's services are not available in your country 解决方法
947 阅读
生活
解决方案
JAVA基础
JVM
多线程
开源框架
数据库
前端
分布式
框架整合
中间件
容器部署
设计模式
数据结构与算法
安全
开发工具
百度网盘
天翼网盘
阿里网盘
登录
Search
标签搜索
java
javase
docker
java8
springboot
thread
spring
分布式
mysql
锁
linux
redis
源码
typecho
centos
git
map
RabbitMQ
lambda
stream
少年
累计撰写
189
篇文章
累计收到
51
条评论
首页
栏目
生活
解决方案
JAVA基础
JVM
多线程
开源框架
数据库
前端
分布式
框架整合
中间件
容器部署
设计模式
数据结构与算法
安全
开发工具
百度网盘
天翼网盘
阿里网盘
页面
关于
友链
搜索到
189
篇与
的结果
2022-09-07
JAVA8-Stream创建
创建Stream创建Stream方式:创建Stream的方式1、通过Collection2、通过values3、通过Arrays4、通过file5、通过iterate创建,无限的创建6、通过Generate创建7、自定义Supplier,创建Stream使用范例1、Collection创建,输出值顺序与之前放入值顺序一致。范例: /** * 通过Collection创建Stream,数据顺序和放入顺序一致 * @return */ public static Stream<String> createStreamByCollection(){ List<String> list = Arrays.asList(new String("Hello"), new String("world"), new String("please")); return list.stream(); }2、values创建,输出值顺序与之前放入值顺序一致。范例: /** * 通过values创建Stream,顺序一直 * @return */ public static Stream<String> createStreamByValues(){ return Stream.of("Hello","world","please"); }3、Arrays创建,输出值顺序与之前放入值顺序一致。范例: /** * 3、通过Arrays创建,顺序一致 * @return */ public static Stream<String> createStreamByArrays(){ return Arrays.stream(new String[]{"Hello","world","please"}); }4、File创建范例: /** * 4、通过file创建 * @return */ public static Stream<String> createStreamByFile(){ Path path = Paths.get("D:\\software\\workspace\\IdeaProjects\\study\\study-java8\\src\\main\\java\\com\\example\\study\\java8\\streams\\CreateStream.java"); try { Stream<String> stream = Files.lines(path); return stream; } catch (IOException e) { throw new RuntimeException(e.getMessage()); } }5、iterate无限的创建范例: /** * 5、通过iterate创建,无限的创建 * @return */ public static Stream<Integer> createStreamByIterate(){ return Stream.iterate(0, n->n+2).limit(10); } 6、Generate创建范例: /** * 6、通过Generate创建 * @return */ public static Stream<Double> crateStreamByGenerate(){ return Stream.generate(Math::random).limit(10); }7、自定义Supplier,创建Stream范例: /** * 自定义Supplier,创建Stream * @return */ public static Stream<Obj> createStreamByDefine(){ return Stream.generate(new ObjSupplier()).limit(10); } static class ObjSupplier implements Supplier<Obj> { int index =0; Random random = new Random(System.currentTimeMillis()); @Override public Obj get() { index = random.nextInt(100); return new Obj(index, "Name->"+index); } } @Data @AllArgsConstructor @NoArgsConstructor @ToString static class Obj{ private Integer id; private String name; }熟悉创建Stream后,就是使用其api进行开发了。
2022年09月07日
248 阅读
0 评论
2 点赞
2022-09-06
JAVA8-Stream源码
Stream基本使用及特点Stream说明Stream操作分为:2组,//注意,流式管道操作,只能操作一次,否则报错。1、可连续操作: filter, map, and limit can be connected together to form a pipeline.2、操作中断collect causes the pipeline to be executed and closes it.使用范例:package com.example.study.java8.streams; import java.util.*; import java.util.stream.Stream; import static java.util.Comparator.comparing; import static java.util.stream.Collectors.toList; /** * Stream使用 * Stream操作分为:2组,//注意,流式管道操作,只能操作一次,否则报错 * You can see two groups of operations: * 1、可连续操作 * filter, map, and limit can be connected together to form a pipeline. * 2、操作中断 * collect causes the pipeline to be executed and closes it. */ public class SimpleStream { public static void main(String[] args) { List<Dish> menu = Arrays.asList( new Dish("pork", false, 800, Dish.Type.MEAT), new Dish("beef", false, 700, Dish.Type.MEAT), new Dish("chicken", false, 400, Dish.Type.MEAT), new Dish("french fries", true, 530, Dish.Type.OTHER), new Dish("rice", true, 350, Dish.Type.OTHER), new Dish("season fruit", true, 120, Dish.Type.OTHER), new Dish("pizza", true, 550, Dish.Type.OTHER), new Dish("prawns", false, 300, Dish.Type.FISH), new Dish("salmon", false, 450, Dish.Type.FISH)); Stream<Dish> stream = menu.stream(); stream.forEach(System.out::println); //注意,流式管道操作,只能操作一次,否则报错 //stream has already been operated upon or closed // stream.forEach(System.out::println); System.out.println("===================================="); //原始调用 List<String> namesByCollections = getDishNamesByCollections(menu); namesByCollections.stream().forEach(System.out::println); System.out.println("===================================="); //lambda stream调用 List<String> lambdaStreamNames = lambdaStream(menu); lambdaStreamNames.stream().forEach(System.out::println); } //原始写法 public static List<String> getDishNamesByCollections(List<Dish> menu) { List<Dish> caloriesDis = new ArrayList<>(); for (Dish dish : menu) { if (dish.getCalories() < 400) { caloriesDis.add(dish); } } Collections.sort(caloriesDis, (dish1, dish2) -> { return Integer.compare(dish1.getCalories(), dish2.getCalories()); }); List<String> names = new ArrayList<>(); for(Dish dish : caloriesDis){ names.add(dish.getName()); } return names; } //stream lambda处理 public static List<String> lambdaStream(List<Dish> menu){ return menu.stream().filter(dis -> dis.getCalories() < 400) .sorted(comparing(Dish::getCalories)) .map(Dish::getName).collect(toList()); } } 主要掌握Stream接口中常用方法。Stream源码:/* * Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package java.util.stream; import java.nio.file.Files; import java.nio.file.Path; import java.util.Arrays; import java.util.Collection; import java.util.Comparator; import java.util.Objects; import java.util.Optional; import java.util.Spliterator; import java.util.Spliterators; import java.util.concurrent.ConcurrentHashMap; import java.util.function.BiConsumer; import java.util.function.BiFunction; import java.util.function.BinaryOperator; import java.util.function.Consumer; import java.util.function.Function; import java.util.function.IntFunction; import java.util.function.Predicate; import java.util.function.Supplier; import java.util.function.ToDoubleFunction; import java.util.function.ToIntFunction; import java.util.function.ToLongFunction; import java.util.function.UnaryOperator; /** * A sequence of elements supporting sequential and parallel aggregate * operations. The following example illustrates an aggregate operation using * {@link Stream} and {@link IntStream}: * * <pre>{@code * int sum = widgets.stream() * .filter(w -> w.getColor() == RED) * .mapToInt(w -> w.getWeight()) * .sum(); * }</pre> * * In this example, {@code widgets} is a {@code Collection<Widget>}. We create * a stream of {@code Widget} objects via {@link Collection#stream Collection.stream()}, * filter it to produce a stream containing only the red widgets, and then * transform it into a stream of {@code int} values representing the weight of * each red widget. Then this stream is summed to produce a total weight. * * <p>In addition to {@code Stream}, which is a stream of object references, * there are primitive specializations for {@link IntStream}, {@link LongStream}, * and {@link DoubleStream}, all of which are referred to as "streams" and * conform to the characteristics and restrictions described here. * * <p>To perform a computation, stream * <a href="package-summary.html#StreamOps">operations</a> are composed into a * <em>stream pipeline</em>. A stream pipeline consists of a source (which * might be an array, a collection, a generator function, an I/O channel, * etc), zero or more <em>intermediate operations</em> (which transform a * stream into another stream, such as {@link Stream#filter(Predicate)}), and a * <em>terminal operation</em> (which produces a result or side-effect, such * as {@link Stream#count()} or {@link Stream#forEach(Consumer)}). * Streams are lazy; computation on the source data is only performed when the * terminal operation is initiated, and source elements are consumed only * as needed. * * <p>A stream implementation is permitted significant latitude in optimizing * the computation of the result. For example, a stream implementation is free * to elide operations (or entire stages) from a stream pipeline -- and * therefore elide invocation of behavioral parameters -- if it can prove that * it would not affect the result of the computation. This means that * side-effects of behavioral parameters may not always be executed and should * not be relied upon, unless otherwise specified (such as by the terminal * operations {@code forEach} and {@code forEachOrdered}). (For a specific * example of such an optimization, see the API note documented on the * {@link #count} operation. For more detail, see the * <a href="package-summary.html#SideEffects">side-effects</a> section of the * stream package documentation.) * * <p>Collections and streams, while bearing some superficial similarities, * have different goals. Collections are primarily concerned with the efficient * management of, and access to, their elements. By contrast, streams do not * provide a means to directly access or manipulate their elements, and are * instead concerned with declaratively describing their source and the * computational operations which will be performed in aggregate on that source. * However, if the provided stream operations do not offer the desired * functionality, the {@link #iterator()} and {@link #spliterator()} operations * can be used to perform a controlled traversal. * * <p>A stream pipeline, like the "widgets" example above, can be viewed as * a <em>query</em> on the stream source. Unless the source was explicitly * designed for concurrent modification (such as a {@link ConcurrentHashMap}), * unpredictable or erroneous behavior may result from modifying the stream * source while it is being queried. * * <p>Most stream operations accept parameters that describe user-specified * behavior, such as the lambda expression {@code w -> w.getWeight()} passed to * {@code mapToInt} in the example above. To preserve correct behavior, * these <em>behavioral parameters</em>: * <ul> * <li>must be <a href="package-summary.html#NonInterference">non-interfering</a> * (they do not modify the stream source); and</li> * <li>in most cases must be <a href="package-summary.html#Statelessness">stateless</a> * (their result should not depend on any state that might change during execution * of the stream pipeline).</li> * </ul> * * <p>Such parameters are always instances of a * <a href="../function/package-summary.html">functional interface</a> such * as {@link java.util.function.Function}, and are often lambda expressions or * method references. Unless otherwise specified these parameters must be * <em>non-null</em>. * * <p>A stream should be operated on (invoking an intermediate or terminal stream * operation) only once. This rules out, for example, "forked" streams, where * the same source feeds two or more pipelines, or multiple traversals of the * same stream. A stream implementation may throw {@link IllegalStateException} * if it detects that the stream is being reused. However, since some stream * operations may return their receiver rather than a new stream object, it may * not be possible to detect reuse in all cases. * * <p>Streams have a {@link #close()} method and implement {@link AutoCloseable}. * Operating on a stream after it has been closed will throw {@link IllegalStateException}. * Most stream instances do not actually need to be closed after use, as they * are backed by collections, arrays, or generating functions, which require no * special resource management. Generally, only streams whose source is an IO channel, * such as those returned by {@link Files#lines(Path)}, will require closing. If a * stream does require closing, it must be opened as a resource within a try-with-resources * statement or similar control structure to ensure that it is closed promptly after its * operations have completed. * * <p>Stream pipelines may execute either sequentially or in * <a href="package-summary.html#Parallelism">parallel</a>. This * execution mode is a property of the stream. Streams are created * with an initial choice of sequential or parallel execution. (For example, * {@link Collection#stream() Collection.stream()} creates a sequential stream, * and {@link Collection#parallelStream() Collection.parallelStream()} creates * a parallel one.) This choice of execution mode may be modified by the * {@link #sequential()} or {@link #parallel()} methods, and may be queried with * the {@link #isParallel()} method. * * @param <T> the type of the stream elements * @since 1.8 * @see IntStream * @see LongStream * @see DoubleStream * @see <a href="package-summary.html">java.util.stream</a> */ public interface Stream<T> extends BaseStream<T, Stream<T>> { /** * Returns a stream consisting of the elements of this stream that match * the given predicate. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * predicate to apply to each element to determine if it * should be included * @return the new stream */ Stream<T> filter(Predicate<? super T> predicate); /** * Returns a stream consisting of the results of applying the given * function to the elements of this stream. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @param <R> The element type of the new stream * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function to apply to each element * @return the new stream */ <R> Stream<R> map(Function<? super T, ? extends R> mapper); /** * Returns an {@code IntStream} consisting of the results of applying the * given function to the elements of this stream. * * <p>This is an <a href="package-summary.html#StreamOps"> * intermediate operation</a>. * * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function to apply to each element * @return the new stream */ IntStream mapToInt(ToIntFunction<? super T> mapper); /** * Returns a {@code LongStream} consisting of the results of applying the * given function to the elements of this stream. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function to apply to each element * @return the new stream */ LongStream mapToLong(ToLongFunction<? super T> mapper); /** * Returns a {@code DoubleStream} consisting of the results of applying the * given function to the elements of this stream. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function to apply to each element * @return the new stream */ DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper); /** * Returns a stream consisting of the results of replacing each element of * this stream with the contents of a mapped stream produced by applying * the provided mapping function to each element. Each mapped stream is * {@link java.util.stream.BaseStream#close() closed} after its contents * have been placed into this stream. (If a mapped stream is {@code null} * an empty stream is used, instead.) * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @apiNote * The {@code flatMap()} operation has the effect of applying a one-to-many * transformation to the elements of the stream, and then flattening the * resulting elements into a new stream. * * <p><b>Examples.</b> * * <p>If {@code orders} is a stream of purchase orders, and each purchase * order contains a collection of line items, then the following produces a * stream containing all the line items in all the orders: * <pre>{@code * orders.flatMap(order -> order.getLineItems().stream())... * }</pre> * * <p>If {@code path} is the path to a file, then the following produces a * stream of the {@code words} contained in that file: * <pre>{@code * Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8); * Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +"))); * }</pre> * The {@code mapper} function passed to {@code flatMap} splits a line, * using a simple regular expression, into an array of words, and then * creates a stream of words from that array. * * @param <R> The element type of the new stream * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function to apply to each element which produces a stream * of new values * @return the new stream */ <R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper); /** * Returns an {@code IntStream} consisting of the results of replacing each * element of this stream with the contents of a mapped stream produced by * applying the provided mapping function to each element. Each mapped * stream is {@link java.util.stream.BaseStream#close() closed} after its * contents have been placed into this stream. (If a mapped stream is * {@code null} an empty stream is used, instead.) * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function to apply to each element which produces a stream * of new values * @return the new stream * @see #flatMap(Function) */ IntStream flatMapToInt(Function<? super T, ? extends IntStream> mapper); /** * Returns an {@code LongStream} consisting of the results of replacing each * element of this stream with the contents of a mapped stream produced by * applying the provided mapping function to each element. Each mapped * stream is {@link java.util.stream.BaseStream#close() closed} after its * contents have been placed into this stream. (If a mapped stream is * {@code null} an empty stream is used, instead.) * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function to apply to each element which produces a stream * of new values * @return the new stream * @see #flatMap(Function) */ LongStream flatMapToLong(Function<? super T, ? extends LongStream> mapper); /** * Returns an {@code DoubleStream} consisting of the results of replacing * each element of this stream with the contents of a mapped stream produced * by applying the provided mapping function to each element. Each mapped * stream is {@link java.util.stream.BaseStream#close() closed} after its * contents have placed been into this stream. (If a mapped stream is * {@code null} an empty stream is used, instead.) * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function to apply to each element which produces a stream * of new values * @return the new stream * @see #flatMap(Function) */ DoubleStream flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper); /** * Returns a stream consisting of the distinct elements (according to * {@link Object#equals(Object)}) of this stream. * * <p>For ordered streams, the selection of distinct elements is stable * (for duplicated elements, the element appearing first in the encounter * order is preserved.) For unordered streams, no stability guarantees * are made. * * <p>This is a <a href="package-summary.html#StreamOps">stateful * intermediate operation</a>. * * @apiNote * Preserving stability for {@code distinct()} in parallel pipelines is * relatively expensive (requires that the operation act as a full barrier, * with substantial buffering overhead), and stability is often not needed. * Using an unordered stream source (such as {@link #generate(Supplier)}) * or removing the ordering constraint with {@link #unordered()} may result * in significantly more efficient execution for {@code distinct()} in parallel * pipelines, if the semantics of your situation permit. If consistency * with encounter order is required, and you are experiencing poor performance * or memory utilization with {@code distinct()} in parallel pipelines, * switching to sequential execution with {@link #sequential()} may improve * performance. * * @return the new stream */ Stream<T> distinct(); /** * Returns a stream consisting of the elements of this stream, sorted * according to natural order. If the elements of this stream are not * {@code Comparable}, a {@code java.lang.ClassCastException} may be thrown * when the terminal operation is executed. * * <p>For ordered streams, the sort is stable. For unordered streams, no * stability guarantees are made. * * <p>This is a <a href="package-summary.html#StreamOps">stateful * intermediate operation</a>. * * @return the new stream */ Stream<T> sorted(); /** * Returns a stream consisting of the elements of this stream, sorted * according to the provided {@code Comparator}. * * <p>For ordered streams, the sort is stable. For unordered streams, no * stability guarantees are made. * * <p>This is a <a href="package-summary.html#StreamOps">stateful * intermediate operation</a>. * * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * {@code Comparator} to be used to compare stream elements * @return the new stream */ Stream<T> sorted(Comparator<? super T> comparator); /** * Returns a stream consisting of the elements of this stream, additionally * performing the provided action on each element as elements are consumed * from the resulting stream. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * <p>For parallel stream pipelines, the action may be called at * whatever time and in whatever thread the element is made available by the * upstream operation. If the action modifies shared state, * it is responsible for providing the required synchronization. * * @apiNote This method exists mainly to support debugging, where you want * to see the elements as they flow past a certain point in a pipeline: * <pre>{@code * Stream.of("one", "two", "three", "four") * .filter(e -> e.length() > 3) * .peek(e -> System.out.println("Filtered value: " + e)) * .map(String::toUpperCase) * .peek(e -> System.out.println("Mapped value: " + e)) * .collect(Collectors.toList()); * }</pre> * * <p>In cases where the stream implementation is able to optimize away the * production of some or all the elements (such as with short-circuiting * operations like {@code findFirst}, or in the example described in * {@link #count}), the action will not be invoked for those elements. * * @param action a <a href="package-summary.html#NonInterference"> * non-interfering</a> action to perform on the elements as * they are consumed from the stream * @return the new stream */ Stream<T> peek(Consumer<? super T> action); /** * Returns a stream consisting of the elements of this stream, truncated * to be no longer than {@code maxSize} in length. * * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting * stateful intermediate operation</a>. * * @apiNote * While {@code limit()} is generally a cheap operation on sequential * stream pipelines, it can be quite expensive on ordered parallel pipelines, * especially for large values of {@code maxSize}, since {@code limit(n)} * is constrained to return not just any <em>n</em> elements, but the * <em>first n</em> elements in the encounter order. Using an unordered * stream source (such as {@link #generate(Supplier)}) or removing the * ordering constraint with {@link #unordered()} may result in significant * speedups of {@code limit()} in parallel pipelines, if the semantics of * your situation permit. If consistency with encounter order is required, * and you are experiencing poor performance or memory utilization with * {@code limit()} in parallel pipelines, switching to sequential execution * with {@link #sequential()} may improve performance. * * @param maxSize the number of elements the stream should be limited to * @return the new stream * @throws IllegalArgumentException if {@code maxSize} is negative */ Stream<T> limit(long maxSize); /** * Returns a stream consisting of the remaining elements of this stream * after discarding the first {@code n} elements of the stream. * If this stream contains fewer than {@code n} elements then an * empty stream will be returned. * * <p>This is a <a href="package-summary.html#StreamOps">stateful * intermediate operation</a>. * * @apiNote * While {@code skip()} is generally a cheap operation on sequential * stream pipelines, it can be quite expensive on ordered parallel pipelines, * especially for large values of {@code n}, since {@code skip(n)} * is constrained to skip not just any <em>n</em> elements, but the * <em>first n</em> elements in the encounter order. Using an unordered * stream source (such as {@link #generate(Supplier)}) or removing the * ordering constraint with {@link #unordered()} may result in significant * speedups of {@code skip()} in parallel pipelines, if the semantics of * your situation permit. If consistency with encounter order is required, * and you are experiencing poor performance or memory utilization with * {@code skip()} in parallel pipelines, switching to sequential execution * with {@link #sequential()} may improve performance. * * @param n the number of leading elements to skip * @return the new stream * @throws IllegalArgumentException if {@code n} is negative */ Stream<T> skip(long n); /** * Returns, if this stream is ordered, a stream consisting of the longest * prefix of elements taken from this stream that match the given predicate. * Otherwise returns, if this stream is unordered, a stream consisting of a * subset of elements taken from this stream that match the given predicate. * * <p>If this stream is ordered then the longest prefix is a contiguous * sequence of elements of this stream that match the given predicate. The * first element of the sequence is the first element of this stream, and * the element immediately following the last element of the sequence does * not match the given predicate. * * <p>If this stream is unordered, and some (but not all) elements of this * stream match the given predicate, then the behavior of this operation is * nondeterministic; it is free to take any subset of matching elements * (which includes the empty set). * * <p>Independent of whether this stream is ordered or unordered if all * elements of this stream match the given predicate then this operation * takes all elements (the result is the same as the input), or if no * elements of the stream match the given predicate then no elements are * taken (the result is an empty stream). * * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting * stateful intermediate operation</a>. * * @implSpec * The default implementation obtains the {@link #spliterator() spliterator} * of this stream, wraps that spliterator so as to support the semantics * of this operation on traversal, and returns a new stream associated with * the wrapped spliterator. The returned stream preserves the execution * characteristics of this stream (namely parallel or sequential execution * as per {@link #isParallel()}) but the wrapped spliterator may choose to * not support splitting. When the returned stream is closed, the close * handlers for both the returned and this stream are invoked. * * @apiNote * While {@code takeWhile()} is generally a cheap operation on sequential * stream pipelines, it can be quite expensive on ordered parallel * pipelines, since the operation is constrained to return not just any * valid prefix, but the longest prefix of elements in the encounter order. * Using an unordered stream source (such as {@link #generate(Supplier)}) or * removing the ordering constraint with {@link #unordered()} may result in * significant speedups of {@code takeWhile()} in parallel pipelines, if the * semantics of your situation permit. If consistency with encounter order * is required, and you are experiencing poor performance or memory * utilization with {@code takeWhile()} in parallel pipelines, switching to * sequential execution with {@link #sequential()} may improve performance. * * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * predicate to apply to elements to determine the longest * prefix of elements. * @return the new stream * @since 9 */ default Stream<T> takeWhile(Predicate<? super T> predicate) { Objects.requireNonNull(predicate); // Reuses the unordered spliterator, which, when encounter is present, // is safe to use as long as it configured not to split return StreamSupport.stream( new WhileOps.UnorderedWhileSpliterator.OfRef.Taking<>(spliterator(), true, predicate), isParallel()).onClose(this::close); } /** * Returns, if this stream is ordered, a stream consisting of the remaining * elements of this stream after dropping the longest prefix of elements * that match the given predicate. Otherwise returns, if this stream is * unordered, a stream consisting of the remaining elements of this stream * after dropping a subset of elements that match the given predicate. * * <p>If this stream is ordered then the longest prefix is a contiguous * sequence of elements of this stream that match the given predicate. The * first element of the sequence is the first element of this stream, and * the element immediately following the last element of the sequence does * not match the given predicate. * * <p>If this stream is unordered, and some (but not all) elements of this * stream match the given predicate, then the behavior of this operation is * nondeterministic; it is free to drop any subset of matching elements * (which includes the empty set). * * <p>Independent of whether this stream is ordered or unordered if all * elements of this stream match the given predicate then this operation * drops all elements (the result is an empty stream), or if no elements of * the stream match the given predicate then no elements are dropped (the * result is the same as the input). * * <p>This is a <a href="package-summary.html#StreamOps">stateful * intermediate operation</a>. * * @implSpec * The default implementation obtains the {@link #spliterator() spliterator} * of this stream, wraps that spliterator so as to support the semantics * of this operation on traversal, and returns a new stream associated with * the wrapped spliterator. The returned stream preserves the execution * characteristics of this stream (namely parallel or sequential execution * as per {@link #isParallel()}) but the wrapped spliterator may choose to * not support splitting. When the returned stream is closed, the close * handlers for both the returned and this stream are invoked. * * @apiNote * While {@code dropWhile()} is generally a cheap operation on sequential * stream pipelines, it can be quite expensive on ordered parallel * pipelines, since the operation is constrained to return not just any * valid prefix, but the longest prefix of elements in the encounter order. * Using an unordered stream source (such as {@link #generate(Supplier)}) or * removing the ordering constraint with {@link #unordered()} may result in * significant speedups of {@code dropWhile()} in parallel pipelines, if the * semantics of your situation permit. If consistency with encounter order * is required, and you are experiencing poor performance or memory * utilization with {@code dropWhile()} in parallel pipelines, switching to * sequential execution with {@link #sequential()} may improve performance. * * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * predicate to apply to elements to determine the longest * prefix of elements. * @return the new stream * @since 9 */ default Stream<T> dropWhile(Predicate<? super T> predicate) { Objects.requireNonNull(predicate); // Reuses the unordered spliterator, which, when encounter is present, // is safe to use as long as it configured not to split return StreamSupport.stream( new WhileOps.UnorderedWhileSpliterator.OfRef.Dropping<>(spliterator(), true, predicate), isParallel()).onClose(this::close); } /** * Performs an action for each element of this stream. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * <p>The behavior of this operation is explicitly nondeterministic. * For parallel stream pipelines, this operation does <em>not</em> * guarantee to respect the encounter order of the stream, as doing so * would sacrifice the benefit of parallelism. For any given element, the * action may be performed at whatever time and in whatever thread the * library chooses. If the action accesses shared state, it is * responsible for providing the required synchronization. * * @param action a <a href="package-summary.html#NonInterference"> * non-interfering</a> action to perform on the elements */ void forEach(Consumer<? super T> action); /** * Performs an action for each element of this stream, in the encounter * order of the stream if the stream has a defined encounter order. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * <p>This operation processes the elements one at a time, in encounter * order if one exists. Performing the action for one element * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a> * performing the action for subsequent elements, but for any given element, * the action may be performed in whatever thread the library chooses. * * @param action a <a href="package-summary.html#NonInterference"> * non-interfering</a> action to perform on the elements * @see #forEach(Consumer) */ void forEachOrdered(Consumer<? super T> action); /** * Returns an array containing the elements of this stream. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * @return an array, whose {@linkplain Class#getComponentType runtime component * type} is {@code Object}, containing the elements of this stream */ Object[] toArray(); /** * Returns an array containing the elements of this stream, using the * provided {@code generator} function to allocate the returned array, as * well as any additional arrays that might be required for a partitioned * execution or for resizing. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * @apiNote * The generator function takes an integer, which is the size of the * desired array, and produces an array of the desired size. This can be * concisely expressed with an array constructor reference: * <pre>{@code * Person[] men = people.stream() * .filter(p -> p.getGender() == MALE) * .toArray(Person[]::new); * }</pre> * * @param <A> the component type of the resulting array * @param generator a function which produces a new array of the desired * type and the provided length * @return an array containing the elements in this stream * @throws ArrayStoreException if the runtime type of any element of this * stream is not assignable to the {@linkplain Class#getComponentType * runtime component type} of the generated array */ <A> A[] toArray(IntFunction<A[]> generator); /** * Performs a <a href="package-summary.html#Reduction">reduction</a> on the * elements of this stream, using the provided identity value and an * <a href="package-summary.html#Associativity">associative</a> * accumulation function, and returns the reduced value. This is equivalent * to: * <pre>{@code * T result = identity; * for (T element : this stream) * result = accumulator.apply(result, element) * return result; * }</pre> * * but is not constrained to execute sequentially. * * <p>The {@code identity} value must be an identity for the accumulator * function. This means that for all {@code t}, * {@code accumulator.apply(identity, t)} is equal to {@code t}. * The {@code accumulator} function must be an * <a href="package-summary.html#Associativity">associative</a> function. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * @apiNote Sum, min, max, average, and string concatenation are all special * cases of reduction. Summing a stream of numbers can be expressed as: * * <pre>{@code * Integer sum = integers.reduce(0, (a, b) -> a+b); * }</pre> * * or: * * <pre>{@code * Integer sum = integers.reduce(0, Integer::sum); * }</pre> * * <p>While this may seem a more roundabout way to perform an aggregation * compared to simply mutating a running total in a loop, reduction * operations parallelize more gracefully, without needing additional * synchronization and with greatly reduced risk of data races. * * @param identity the identity value for the accumulating function * @param accumulator an <a href="package-summary.html#Associativity">associative</a>, * <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function for combining two values * @return the result of the reduction */ T reduce(T identity, BinaryOperator<T> accumulator); /** * Performs a <a href="package-summary.html#Reduction">reduction</a> on the * elements of this stream, using an * <a href="package-summary.html#Associativity">associative</a> accumulation * function, and returns an {@code Optional} describing the reduced value, * if any. This is equivalent to: * <pre>{@code * boolean foundAny = false; * T result = null; * for (T element : this stream) { * if (!foundAny) { * foundAny = true; * result = element; * } * else * result = accumulator.apply(result, element); * } * return foundAny ? Optional.of(result) : Optional.empty(); * }</pre> * * but is not constrained to execute sequentially. * * <p>The {@code accumulator} function must be an * <a href="package-summary.html#Associativity">associative</a> function. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * @param accumulator an <a href="package-summary.html#Associativity">associative</a>, * <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function for combining two values * @return an {@link Optional} describing the result of the reduction * @throws NullPointerException if the result of the reduction is null * @see #reduce(Object, BinaryOperator) * @see #min(Comparator) * @see #max(Comparator) */ Optional<T> reduce(BinaryOperator<T> accumulator); /** * Performs a <a href="package-summary.html#Reduction">reduction</a> on the * elements of this stream, using the provided identity, accumulation and * combining functions. This is equivalent to: * <pre>{@code * U result = identity; * for (T element : this stream) * result = accumulator.apply(result, element) * return result; * }</pre> * * but is not constrained to execute sequentially. * * <p>The {@code identity} value must be an identity for the combiner * function. This means that for all {@code u}, {@code combiner(identity, u)} * is equal to {@code u}. Additionally, the {@code combiner} function * must be compatible with the {@code accumulator} function; for all * {@code u} and {@code t}, the following must hold: * <pre>{@code * combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t) * }</pre> * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * @apiNote Many reductions using this form can be represented more simply * by an explicit combination of {@code map} and {@code reduce} operations. * The {@code accumulator} function acts as a fused mapper and accumulator, * which can sometimes be more efficient than separate mapping and reduction, * such as when knowing the previously reduced value allows you to avoid * some computation. * * @param <U> The type of the result * @param identity the identity value for the combiner function * @param accumulator an <a href="package-summary.html#Associativity">associative</a>, * <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function for incorporating an additional element into a result * @param combiner an <a href="package-summary.html#Associativity">associative</a>, * <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function for combining two values, which must be * compatible with the accumulator function * @return the result of the reduction * @see #reduce(BinaryOperator) * @see #reduce(Object, BinaryOperator) */ <U> U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner); /** * Performs a <a href="package-summary.html#MutableReduction">mutable * reduction</a> operation on the elements of this stream. A mutable * reduction is one in which the reduced value is a mutable result container, * such as an {@code ArrayList}, and elements are incorporated by updating * the state of the result rather than by replacing the result. This * produces a result equivalent to: * <pre>{@code * R result = supplier.get(); * for (T element : this stream) * accumulator.accept(result, element); * return result; * }</pre> * * <p>Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations * can be parallelized without requiring additional synchronization. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * @apiNote There are many existing classes in the JDK whose signatures are * well-suited for use with method references as arguments to {@code collect()}. * For example, the following will accumulate strings into an {@code ArrayList}: * <pre>{@code * List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add, * ArrayList::addAll); * }</pre> * * <p>The following will take a stream of strings and concatenates them into a * single string: * <pre>{@code * String concat = stringStream.collect(StringBuilder::new, StringBuilder::append, * StringBuilder::append) * .toString(); * }</pre> * * @param <R> the type of the mutable result container * @param supplier a function that creates a new mutable result container. * For a parallel execution, this function may be called * multiple times and must return a fresh value each time. * @param accumulator an <a href="package-summary.html#Associativity">associative</a>, * <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function that must fold an element into a result * container. * @param combiner an <a href="package-summary.html#Associativity">associative</a>, * <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * function that accepts two partial result containers * and merges them, which must be compatible with the * accumulator function. The combiner function must fold * the elements from the second result container into the * first result container. * @return the result of the reduction */ <R> R collect(Supplier<R> supplier, BiConsumer<R, ? super T> accumulator, BiConsumer<R, R> combiner); /** * Performs a <a href="package-summary.html#MutableReduction">mutable * reduction</a> operation on the elements of this stream using a * {@code Collector}. A {@code Collector} * encapsulates the functions used as arguments to * {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of * collection strategies and composition of collect operations such as * multiple-level grouping or partitioning. * * <p>If the stream is parallel, and the {@code Collector} * is {@link Collector.Characteristics#CONCURRENT concurrent}, and * either the stream is unordered or the collector is * {@link Collector.Characteristics#UNORDERED unordered}, * then a concurrent reduction will be performed (see {@link Collector} for * details on concurrent reduction.) * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * <p>When executed in parallel, multiple intermediate results may be * instantiated, populated, and merged so as to maintain isolation of * mutable data structures. Therefore, even when executed in parallel * with non-thread-safe data structures (such as {@code ArrayList}), no * additional synchronization is needed for a parallel reduction. * * @apiNote * The following will accumulate strings into an ArrayList: * <pre>{@code * List<String> asList = stringStream.collect(Collectors.toList()); * }</pre> * * <p>The following will classify {@code Person} objects by city: * <pre>{@code * Map<String, List<Person>> peopleByCity * = personStream.collect(Collectors.groupingBy(Person::getCity)); * }</pre> * * <p>The following will classify {@code Person} objects by state and city, * cascading two {@code Collector}s together: * <pre>{@code * Map<String, Map<String, List<Person>>> peopleByStateAndCity * = personStream.collect(Collectors.groupingBy(Person::getState, * Collectors.groupingBy(Person::getCity))); * }</pre> * * @param <R> the type of the result * @param <A> the intermediate accumulation type of the {@code Collector} * @param collector the {@code Collector} describing the reduction * @return the result of the reduction * @see #collect(Supplier, BiConsumer, BiConsumer) * @see Collectors */ <R, A> R collect(Collector<? super T, A, R> collector); /** * Returns the minimum element of this stream according to the provided * {@code Comparator}. This is a special case of a * <a href="package-summary.html#Reduction">reduction</a>. * * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>. * * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * {@code Comparator} to compare elements of this stream * @return an {@code Optional} describing the minimum element of this stream, * or an empty {@code Optional} if the stream is empty * @throws NullPointerException if the minimum element is null */ Optional<T> min(Comparator<? super T> comparator); /** * Returns the maximum element of this stream according to the provided * {@code Comparator}. This is a special case of a * <a href="package-summary.html#Reduction">reduction</a>. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * {@code Comparator} to compare elements of this stream * @return an {@code Optional} describing the maximum element of this stream, * or an empty {@code Optional} if the stream is empty * @throws NullPointerException if the maximum element is null */ Optional<T> max(Comparator<? super T> comparator); /** * Returns the count of elements in this stream. This is a special case of * a <a href="package-summary.html#Reduction">reduction</a> and is * equivalent to: * <pre>{@code * return mapToLong(e -> 1L).sum(); * }</pre> * * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>. * * @apiNote * An implementation may choose to not execute the stream pipeline (either * sequentially or in parallel) if it is capable of computing the count * directly from the stream source. In such cases no source elements will * be traversed and no intermediate operations will be evaluated. * Behavioral parameters with side-effects, which are strongly discouraged * except for harmless cases such as debugging, may be affected. For * example, consider the following stream: * <pre>{@code * List<String> l = Arrays.asList("A", "B", "C", "D"); * long count = l.stream().peek(System.out::println).count(); * }</pre> * The number of elements covered by the stream source, a {@code List}, is * known and the intermediate operation, {@code peek}, does not inject into * or remove elements from the stream (as may be the case for * {@code flatMap} or {@code filter} operations). Thus the count is the * size of the {@code List} and there is no need to execute the pipeline * and, as a side-effect, print out the list elements. * * @return the count of elements in this stream */ long count(); /** * Returns whether any elements of this stream match the provided * predicate. May not evaluate the predicate on all elements if not * necessary for determining the result. If the stream is empty then * {@code false} is returned and the predicate is not evaluated. * * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting * terminal operation</a>. * * @apiNote * This method evaluates the <em>existential quantification</em> of the * predicate over the elements of the stream (for some x P(x)). * * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * predicate to apply to elements of this stream * @return {@code true} if any elements of the stream match the provided * predicate, otherwise {@code false} */ boolean anyMatch(Predicate<? super T> predicate); /** * Returns whether all elements of this stream match the provided predicate. * May not evaluate the predicate on all elements if not necessary for * determining the result. If the stream is empty then {@code true} is * returned and the predicate is not evaluated. * * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting * terminal operation</a>. * * @apiNote * This method evaluates the <em>universal quantification</em> of the * predicate over the elements of the stream (for all x P(x)). If the * stream is empty, the quantification is said to be <em>vacuously * satisfied</em> and is always {@code true} (regardless of P(x)). * * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * predicate to apply to elements of this stream * @return {@code true} if either all elements of the stream match the * provided predicate or the stream is empty, otherwise {@code false} */ boolean allMatch(Predicate<? super T> predicate); /** * Returns whether no elements of this stream match the provided predicate. * May not evaluate the predicate on all elements if not necessary for * determining the result. If the stream is empty then {@code true} is * returned and the predicate is not evaluated. * * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting * terminal operation</a>. * * @apiNote * This method evaluates the <em>universal quantification</em> of the * negated predicate over the elements of the stream (for all x ~P(x)). If * the stream is empty, the quantification is said to be vacuously satisfied * and is always {@code true}, regardless of P(x). * * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>, * <a href="package-summary.html#Statelessness">stateless</a> * predicate to apply to elements of this stream * @return {@code true} if either no elements of the stream match the * provided predicate or the stream is empty, otherwise {@code false} */ boolean noneMatch(Predicate<? super T> predicate); /** * Returns an {@link Optional} describing the first element of this stream, * or an empty {@code Optional} if the stream is empty. If the stream has * no encounter order, then any element may be returned. * * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting * terminal operation</a>. * * @return an {@code Optional} describing the first element of this stream, * or an empty {@code Optional} if the stream is empty * @throws NullPointerException if the element selected is null */ Optional<T> findFirst(); /** * Returns an {@link Optional} describing some element of the stream, or an * empty {@code Optional} if the stream is empty. * * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting * terminal operation</a>. * * <p>The behavior of this operation is explicitly nondeterministic; it is * free to select any element in the stream. This is to allow for maximal * performance in parallel operations; the cost is that multiple invocations * on the same source may not return the same result. (If a stable result * is desired, use {@link #findFirst()} instead.) * * @return an {@code Optional} describing some element of this stream, or an * empty {@code Optional} if the stream is empty * @throws NullPointerException if the element selected is null * @see #findFirst() */ Optional<T> findAny(); // Static factories /** * Returns a builder for a {@code Stream}. * * @param <T> type of elements * @return a stream builder */ public static<T> Builder<T> builder() { return new Streams.StreamBuilderImpl<>(); } /** * Returns an empty sequential {@code Stream}. * * @param <T> the type of stream elements * @return an empty sequential stream */ public static<T> Stream<T> empty() { return StreamSupport.stream(Spliterators.<T>emptySpliterator(), false); } /** * Returns a sequential {@code Stream} containing a single element. * * @param t the single element * @param <T> the type of stream elements * @return a singleton sequential stream */ public static<T> Stream<T> of(T t) { return StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false); } /** * Returns a sequential {@code Stream} containing a single element, if * non-null, otherwise returns an empty {@code Stream}. * * @param t the single element * @param <T> the type of stream elements * @return a stream with a single element if the specified element * is non-null, otherwise an empty stream * @since 9 */ public static<T> Stream<T> ofNullable(T t) { return t == null ? Stream.empty() : StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false); } /** * Returns a sequential ordered stream whose elements are the specified values. * * @param <T> the type of stream elements * @param values the elements of the new stream * @return the new stream */ @SafeVarargs @SuppressWarnings("varargs") // Creating a stream from an array is safe public static<T> Stream<T> of(T... values) { return Arrays.stream(values); } /** * Returns an infinite sequential ordered {@code Stream} produced by iterative * application of a function {@code f} to an initial element {@code seed}, * producing a {@code Stream} consisting of {@code seed}, {@code f(seed)}, * {@code f(f(seed))}, etc. * * <p>The first element (position {@code 0}) in the {@code Stream} will be * the provided {@code seed}. For {@code n > 0}, the element at position * {@code n}, will be the result of applying the function {@code f} to the * element at position {@code n - 1}. * * <p>The action of applying {@code f} for one element * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a> * the action of applying {@code f} for subsequent elements. For any given * element the action may be performed in whatever thread the library * chooses. * * @param <T> the type of stream elements * @param seed the initial element * @param f a function to be applied to the previous element to produce * a new element * @return a new sequential {@code Stream} */ public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) { Objects.requireNonNull(f); Spliterator<T> spliterator = new Spliterators.AbstractSpliterator<>(Long.MAX_VALUE, Spliterator.ORDERED | Spliterator.IMMUTABLE) { T prev; boolean started; @Override public boolean tryAdvance(Consumer<? super T> action) { Objects.requireNonNull(action); T t; if (started) t = f.apply(prev); else { t = seed; started = true; } action.accept(prev = t); return true; } }; return StreamSupport.stream(spliterator, false); } /** * Returns a sequential ordered {@code Stream} produced by iterative * application of the given {@code next} function to an initial element, * conditioned on satisfying the given {@code hasNext} predicate. The * stream terminates as soon as the {@code hasNext} predicate returns false. * * <p>{@code Stream.iterate} should produce the same sequence of elements as * produced by the corresponding for-loop: * <pre>{@code * for (T index=seed; hasNext.test(index); index = next.apply(index)) { * ... * } * }</pre> * * <p>The resulting sequence may be empty if the {@code hasNext} predicate * does not hold on the seed value. Otherwise the first element will be the * supplied {@code seed} value, the next element (if present) will be the * result of applying the {@code next} function to the {@code seed} value, * and so on iteratively until the {@code hasNext} predicate indicates that * the stream should terminate. * * <p>The action of applying the {@code hasNext} predicate to an element * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a> * the action of applying the {@code next} function to that element. The * action of applying the {@code next} function for one element * <i>happens-before</i> the action of applying the {@code hasNext} * predicate for subsequent elements. For any given element an action may * be performed in whatever thread the library chooses. * * @param <T> the type of stream elements * @param seed the initial element * @param hasNext a predicate to apply to elements to determine when the * stream must terminate. * @param next a function to be applied to the previous element to produce * a new element * @return a new sequential {@code Stream} * @since 9 */ public static<T> Stream<T> iterate(T seed, Predicate<? super T> hasNext, UnaryOperator<T> next) { Objects.requireNonNull(next); Objects.requireNonNull(hasNext); Spliterator<T> spliterator = new Spliterators.AbstractSpliterator<>(Long.MAX_VALUE, Spliterator.ORDERED | Spliterator.IMMUTABLE) { T prev; boolean started, finished; @Override public boolean tryAdvance(Consumer<? super T> action) { Objects.requireNonNull(action); if (finished) return false; T t; if (started) t = next.apply(prev); else { t = seed; started = true; } if (!hasNext.test(t)) { prev = null; finished = true; return false; } action.accept(prev = t); return true; } @Override public void forEachRemaining(Consumer<? super T> action) { Objects.requireNonNull(action); if (finished) return; finished = true; T t = started ? next.apply(prev) : seed; prev = null; while (hasNext.test(t)) { action.accept(t); t = next.apply(t); } } }; return StreamSupport.stream(spliterator, false); } /** * Returns an infinite sequential unordered stream where each element is * generated by the provided {@code Supplier}. This is suitable for * generating constant streams, streams of random elements, etc. * * @param <T> the type of stream elements * @param s the {@code Supplier} of generated elements * @return a new infinite sequential unordered {@code Stream} */ public static<T> Stream<T> generate(Supplier<? extends T> s) { Objects.requireNonNull(s); return StreamSupport.stream( new StreamSpliterators.InfiniteSupplyingSpliterator.OfRef<>(Long.MAX_VALUE, s), false); } /** * Creates a lazily concatenated stream whose elements are all the * elements of the first stream followed by all the elements of the * second stream. The resulting stream is ordered if both * of the input streams are ordered, and parallel if either of the input * streams is parallel. When the resulting stream is closed, the close * handlers for both input streams are invoked. * * <p>This method operates on the two input streams and binds each stream * to its source. As a result subsequent modifications to an input stream * source may not be reflected in the concatenated stream result. * * @implNote * Use caution when constructing streams from repeated concatenation. * Accessing an element of a deeply concatenated stream can result in deep * call chains, or even {@code StackOverflowError}. * * <p>Subsequent changes to the sequential/parallel execution mode of the * returned stream are not guaranteed to be propagated to the input streams. * * @apiNote * To preserve optimization opportunities this method binds each stream to * its source and accepts only two streams as parameters. For example, the * exact size of the concatenated stream source can be computed if the exact * size of each input stream source is known. * To concatenate more streams without binding, or without nested calls to * this method, try creating a stream of streams and flat-mapping with the * identity function, for example: * <pre>{@code * Stream<T> concat = Stream.of(s1, s2, s3, s4).flatMap(s -> s); * }</pre> * * @param <T> The type of stream elements * @param a the first stream * @param b the second stream * @return the concatenation of the two input streams */ public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b) { Objects.requireNonNull(a); Objects.requireNonNull(b); @SuppressWarnings("unchecked") Spliterator<T> split = new Streams.ConcatSpliterator.OfRef<>( (Spliterator<T>) a.spliterator(), (Spliterator<T>) b.spliterator()); Stream<T> stream = StreamSupport.stream(split, a.isParallel() || b.isParallel()); return stream.onClose(Streams.composedClose(a, b)); } /** * A mutable builder for a {@code Stream}. This allows the creation of a * {@code Stream} by generating elements individually and adding them to the * {@code Builder} (without the copying overhead that comes from using * an {@code ArrayList} as a temporary buffer.) * * <p>A stream builder has a lifecycle, which starts in a building * phase, during which elements can be added, and then transitions to a built * phase, after which elements may not be added. The built phase begins * when the {@link #build()} method is called, which creates an ordered * {@code Stream} whose elements are the elements that were added to the stream * builder, in the order they were added. * * @param <T> the type of stream elements * @see Stream#builder() * @since 1.8 */ public interface Builder<T> extends Consumer<T> { /** * Adds an element to the stream being built. * * @throws IllegalStateException if the builder has already transitioned to * the built state */ @Override void accept(T t); /** * Adds an element to the stream being built. * * @implSpec * The default implementation behaves as if: * <pre>{@code * accept(t) * return this; * }</pre> * * @param t the element to add * @return {@code this} builder * @throws IllegalStateException if the builder has already transitioned to * the built state */ default Builder<T> add(T t) { accept(t); return this; } /** * Builds the stream, transitioning this builder to the built state. * An {@code IllegalStateException} is thrown if there are further attempts * to operate on the builder after it has entered the built state. * * @return the built stream * @throws IllegalStateException if the builder has already transitioned to * the built state */ Stream<T> build(); } }
2022年09月06日
258 阅读
0 评论
2 点赞
2022-09-06
JAVA8方法推导
Lambda方法推导详细解析什么情况下可以进行方法推导?类的方法(静态方法)对象的方法构造方法自定义函数式接口范例:package com.example.study.java8.InterfaceFunction; import java.util.Arrays; import java.util.Comparator; import java.util.List; import java.util.function.BiFunction; import java.util.function.Consumer; import java.util.function.Function; import java.util.function.Supplier; /** * 方法推导 * 什么情况下可以进行方法推导: * 1、类的方法(静态方法) * 2、对象的方法 * 3、构造方法 */ public class MethodReferenceUsageDemoOne { public static void main(String[] args) { //方法推导,范例一:类的方法 //原始写法 Consumer<String> consumer = s-> System.out.println(s); genericityConsumer(consumer, "hello"); //1、进化一 genericityConsumer(s->System.out.println(s), "world"); //2、进化二 genericityConsumer(System.out::println, "nice"); System.out.println("==========================="); //方法推导,范例二:类的方法 List<Apple> list = Arrays.asList(new Apple("red", 10) , new Apple("red", 60) , new Apple("blue", 40) , new Apple("black", 30) , new Apple("green", 80) , new Apple("blue", 90) , new Apple("green", 60) , new Apple("green", 50) , new Apple("red", 20)); System.out.println(list); list.sort((oneParameter,twoParameter)->oneParameter.getColor().compareTo(twoParameter.getColor())); System.out.println(list); System.out.println("============排序另一种写法==============="); //排序另一种写法 List<Apple> list2= Arrays.asList(new Apple("red", 10) , new Apple("red", 60) , new Apple("blue", 40) , new Apple("black", 30) , new Apple("green", 80) , new Apple("blue", 90) , new Apple("green", 60) , new Apple("green", 50) , new Apple("red", 20)); System.out.println(list2); list2.sort(Comparator.comparing(Apple::getColor)); //排序说明: //1、匿名内部类 //2、上面第一种写法 //3、上面第二种写法 //代码越来越简单 System.out.println("==========================="); //方法推导,范例三:类的方法 //原始写法 list.stream().forEach(apple->System.out.println(apple)); System.out.println("==========================="); //进化1 list.stream().forEach(System.out::println); System.out.println("==========================="); //方法推导,范例四:类的方法 //原始写法 Integer integer = Integer.parseInt("123"); System.out.println(integer); System.out.println("==========================="); //进化 Function<String, Integer> function = Integer::parseInt; Integer integerTwo = function.apply("321"); System.out.println(integerTwo); System.out.println("==========================="); //方法推导,范例五:对象的方法 BiFunction<String, Integer, Character> stringIntegerCharacterBiFunction = String::charAt; Character character = stringIntegerCharacterBiFunction.apply("Hello", 1); System.out.println(character); System.out.println("==========================="); //方法推导,范例六:构造方法,1个参数 Supplier<String> supplier = String::new; String str = supplier.get(); System.out.println(str.getClass()); System.out.println("==========================="); //方法推导,范例七:构造方法,2个参数 //说明:Apple::new; 就是掉构造方法,自动推导参数和类型 BiFunction<String,Integer,Apple> appleBiFunction = Apple::new; Apple apple = appleBiFunction.apply("red", 50); System.out.println(apple); System.out.println("==========================="); //方法推导,范例八:构造方法-自定义FunctionalInterface接口,多个参数 CustomThreeFunctionalInterface<String,Integer,String,ComplexApple> appleSupplier = ComplexApple::new; ComplexApple complexApple = appleSupplier.apply("苹果",20,"green"); System.out.println(complexApple); } /** * 泛型Consumer * @param consumer * @param t * @param <T> */ public static <T> void genericityConsumer(Consumer<T> consumer, T t){ consumer.accept(t); } } 自定义函数式接口package com.example.study.java8.InterfaceFunction; /** * 自定义多个参数函数接口,创建对象 */ @FunctionalInterface public interface CustomThreeFunctionalInterface<T, U, K, R> { R apply(T t, U u, K k); } ComplexApplepackage com.example.study.java8.InterfaceFunction; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import lombok.ToString; /** * 多个参数,构造方法推导 */ @Data @AllArgsConstructor @NoArgsConstructor @ToString public class ComplexApple { private String color; private Integer weight; private String name; } 主要讲解了,Lambda方法推导的常见用法。
2022年09月06日
237 阅读
0 评论
3 点赞
2022-09-06
Java8-functionInterface
Lambda表达式用法用户范例package com.example.study.java8.InterfaceFunction; /** * lambda表达式用法 */ public class LambdaUsage { public static void main(String[] args) { Runnable runnable1 = ()-> System.out.println("hello"); Runnable runnable2 = new Runnable() { @Override public void run() { System.out.println("hello"); } }; process(runnable1); process(runnable2); process(()-> System.out.println("hello")); } public static void process(Runnable runnable){ runnable.run(); } } 学习目标一、Predicate:诊断,返回boolean类型@FunctionalInterface public interface Predicate {/** * Evaluates this predicate on the given argument. * * @param t the input argument * @return {@code true} if the input argument matches the predicate, * otherwise {@code false} */ boolean test(T t);二、Consumer:消费者,没有返回类型@FunctionalInterface public interface Consumer {/** * Performs this operation on the given argument. * * @param t the input argument */ void accept(T t);三、Function:函数有返回值@FunctionalInterface public interface Function<T, R> {/** * Applies this function to the given argument. * * @param t the function argument * @return the function result */ R apply(T t);四、Supplier:生成者:返回一个对象@FunctionalInterface public interface Supplier {/** * Gets a result. * * @return a result */ T get();详细说明1、Predicate详细用法范例: package com.example.study.java8.InterfaceFunction; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.function.BiPredicate; import java.util.function.IntPredicate; import java.util.function.Predicate; /** * Lambda表达式的使用:Prodicate用法 */ public class LambdaUsagePredicate { public static void main(String[] args) { List<Apple> list = Arrays.asList(new Apple("red", 10) , new Apple("red", 60) , new Apple("blue", 40) , new Apple("black", 30) , new Apple("green", 80) , new Apple("blue", 90) , new Apple("green", 60) , new Apple("green", 50) , new Apple("red", 20)); //Predicate用法 List<Apple> filterList = filter(list, apple -> apple.getColor().equals("green")); for (Apple apple : filterList) { System.out.println(apple.toString()); } System.out.println("============================"); //其它类似Predicate用法 //IntegerPredicate用法 List<Apple> filterByWeight = predicateByWeight(list, weight -> weight == 60); for (Apple apple : filterByWeight) { System.out.println(apple.toString()); } System.out.println("============================"); //BiPredicate用法 List<Apple> biPredicateResult = biPredicateByColorAndWeight(list, (color, weight) -> { return color.equals("green") && weight == 60; }); for (Apple apple : biPredicateResult) { System.out.println(apple.toString()); } } //1、Predicate:诊断的用法 public static List<Apple> filter(List<Apple> sources, Predicate<Apple> predicate) { List<Apple> result = new ArrayList<>(); for (Apple apple : sources) { if (predicate.test(apple)) { result.add(apple); } } return result; } //2、其它类似Predicate用法 //IntegerPredicate用法 public static List<Apple> predicateByWeight(List<Apple> source, IntPredicate intPredicate) { List<Apple> result = new ArrayList<>(); for (Apple apple : source) { if (intPredicate.test(apple.getWeight())) { result.add(apple); } } return result; } //3、带2个参数的BiPredicate用法 public static List<Apple> biPredicateByColorAndWeight(List<Apple> source, BiPredicate<String, Integer> biPredicate) { List<Apple> result = new ArrayList<Apple>(); for (Apple apple : source) { if (biPredicate.test(apple.getColor(), apple.getWeight())) { result.add(apple); } } return result; } } 2、Consumer详细用法范例: package com.example.study.java8.InterfaceFunction; import java.util.Arrays; import java.util.List; import java.util.function.BiConsumer; import java.util.function.Consumer; /** * Lambda表达式:Consumer用法 */ public class LambdaUasgeConsumer { public static void main(String[] args) { List<Apple> list = Arrays.asList(new Apple("red", 10) , new Apple("red", 60) , new Apple("blue", 40) , new Apple("black", 30) , new Apple("green", 80) , new Apple("blue", 90) , new Apple("green", 60) , new Apple("green", 50) , new Apple("red", 20)); //1个参数调用 simpleUsageConsumer(list, apple -> System.out.println(apple.toString())); System.out.println("========================"); twoArgsUsageConsumer("我买了水果",list, (apple, name)->{ System.out.println(name+",颜色:"+apple.getColor()+"\t 重量:"+apple.getWeight()); }); } //1、一个参数用法 public static void simpleUsageConsumer(List<Apple> source, Consumer<Apple> consumer) { for (Apple apple : source) { consumer.accept(apple); } } //2、两个参数用法 public static void twoArgsUsageConsumer(String name, List<Apple> source, BiConsumer<Apple, String> consumer) { for (Apple apple : source) { consumer.accept(apple, name); } } } 3、Funcation详细用法范例:package com.example.study.java8.InterfaceFunction; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.function.BiFunction; import java.util.function.Function; import java.util.function.IntFunction; /** * Lambda表达式:Funcation用法 */ public class LambdaUsageFuncation { public static void main(String[] args) { List<Apple> list = Arrays.asList(new Apple("red", 10) , new Apple("red", 60) , new Apple("blue", 40) , new Apple("black", 30) , new Apple("green", 80) , new Apple("blue", 90) , new Apple("green", 60) , new Apple("green", 50) , new Apple("red", 20)); //1、2个参数调用 List<String> stringsUsageFuncation = simpleUsageFuncation(list, apple -> apple.getColor() + ":颜色"); for(String color: stringsUsageFuncation){ System.out.println(color); } System.out.println("============================"); //2、其它用法IntFuncation调用 List<Integer> integerList = intUsageFuncation(list, weight-> weight*20); for(Integer i : integerList){ System.out.println(i); } System.out.println("=============================="); //3、3个参数调用 Apple newApple = threeeUsageFuncation("彩色", 178, (newColor, newInteger) -> { return new Apple(newColor, newInteger); }); System.out.println(newApple.toString()); } //1、2个参数 简单用法 public static List<String> simpleUsageFuncation(List<Apple> source, Function<Apple, String> function){ List<String > result = new ArrayList<>(); for(Apple apple:source){ result.add(function.apply(apple)); } return result; } //2、其它用法IntFuncation public static List<Integer> intUsageFuncation(List<Apple> source, IntFunction<Integer> function){ List<Integer > result = new ArrayList<>(); for(Apple apple:source){ result.add(function.apply(apple.getWeight())); } return result; } //3、3个参数用法 public static Apple threeeUsageFuncation(String newColor, Integer newWeight, BiFunction<String, Integer, Apple> biFunction){ return biFunction.apply(newColor, newWeight); } } 4、Supplier详细用户范例:package com.example.study.java8.InterfaceFunction; import java.util.function.Supplier; /** * Lamdba表达式之Supplier用法 */ public class LambdaUsageSupplier { public static void main(String[] args) { //范例1 Supplier<String> stringSuppier = String::new; System.out.println(stringSuppier.get().getClass()); System.out.println("====================="); //范例2 Apple apple = createApple(() -> { return new Apple("五颜六色", 200); }); System.out.println(apple.toString()); } public static Apple createApple(Supplier<Apple> supplier){ return supplier.get(); } } 注意:参数类型package com.example.study.java8.InterfaceFunction; /** * 参数类型注意 */ public class ArgsCase { public static void main(String[] args) { int i =0; Runnable runnable = new Runnable() { @Override public void run() { //i会报错提示: //Variable 'i' is accessed from within inner class, needs to be final or effectively final // i++; } }; i++; //Lambda表达式 Runnable runnable1 = ()->{ //i同样报错提示: //Variable used in lambda expression should be final or effectively final // System.out.println(i); }; i++; } }
2022年09月06日
283 阅读
0 评论
5 点赞
2022-09-05
Java8-Lambda语法
Lambda表达式一、lambda语法参数列表 lambda body部分 (o1,o2)->o1.getWeight().compareTo(o2.getWeight());二、 合法lamdba表达式1、s -> s.length(); 或者 (String s) -> s.length(); 2、apple -> apple.getColor().equals("great"); 或者 (Apple apple) -> apple.getColor().equals("great"); 3、(int x, int y) -> { System.out.println(x); System.out.println(y); }; 4、() -> 12; 5、()-{}; 6、()->“hello” 或者 ()->{return "hello"}三、语法总结语法一、(参数列表) -> 表达式 语法二、(参数列表) -> {语句;}有效lambda表达式1、() -> {} 2、() -> "hello" 或者 ()->{reurn "hello"} 3、(String str) -> {return "hello"} 或者 (String str) -> "hello";无效lambda表达式(integer i)->{return "错误示范"+i}四、代码说明package com.example.study.java8.InterfaceFunction; import java.util.Arrays; import java.util.Comparator; import java.util.List; import java.util.concurrent.Callable; import java.util.function.Function; import java.util.function.Predicate; /** * lambda语法 */ public class LambdaExpression { public static void main(String[] args) { Comparator<Apple> colorComparator = new Comparator<Apple>() { @Override public int compare(Apple o1, Apple o2) { return o1.getColor().compareTo(o2.getColor()); } }; List<Apple> apples = Arrays.asList(new Apple("a", 18), new Apple("c", 20), new Apple("b", 10)); for (Apple a : apples) { System.out.println(a.toString()); } System.out.println("================================="); apples.sort(colorComparator); for (Apple a : apples) { System.out.println(a.toString()); } System.out.println("================================="); //lambda expression //方法推导:接口有返回值时,注意lambda有大括号{},必须要有return,没有可以不用使用return关键词 //1、有{},必须使用return Comparator<Apple> weightComparator = (o1, o2) -> { return o1.getWeight().compareTo(o2.getWeight()); }; //2、不使用{},没有return Comparator<Apple> weightComparator2 = (o1, o2) -> o1.getWeight().compareTo(o2.getWeight()); apples.sort(weightComparator); for (Apple a : apples) { System.out.println(a.toString()); } //合法lambda表达式格式1 Function<String, Integer> stringIntegerFunction = s -> s.length(); //合法lambda表达式格式2 Predicate<Apple> great = (Apple apple) -> apple.getColor().equals("great"); Predicate<Apple> great2 = apple -> apple.getColor().equals("great"); //合法lambda表达式格式3 // (int x, int y) -> { // System.out.println(x); // System.out.println(y); // }; //合法lambda表达式格式4 Callable<Integer> integerCallable = () -> 12; //合法lambda表达式格式5 Runnable runnable = () -> { }; //合法lambda表达式格式6 Callable<String> stringCallable = () -> "hello"; //合法lambda表达式格式7 Function<String, String> stringStringFunction = (String str) -> { return "hello"; }; //合法lambda表达式格式8 Function<String, String> stringStringFunction1 = (String str) -> "hello"; } }五、学习目标熟悉lambda语法后,主要学习:function、stream。java.util.function、java.util.stream包下接口用法六、Function学习java.util.function包下主要的4中lambda接口用法以及扩展用户1、Function有返回值@FunctionalInterface public interface Function<T, R> { /** * Applies this function to the given argument. * * @param t the function argument * @return the function result */ R apply(T t);范例: //Funcation有返回参数类型 //1、返回Boolean类型 Function<Apple, Boolean> boolearnFunction = apple -> apple.getColor().equals("red"); //2、返回String类型 Function<Apple, String> stringFunction = apple -> apple.getColor(); //3、返回Integer类型 Function<Apple, Integer> integerFunction = apple -> apple.getWeight(); //4、。。。等等其它类型同理2、无返回值@FunctionalInterface public interface Consumer<T> { /** * Performs this operation on the given argument. * * @param t the input argument */ void accept(T t);范例: //Consumer无参数返回类型 Consumer<Apple> appleConsumer = apple -> System.out.println(apple.getColor()); Consumer<Apple> appleConsumer2 = apple -> System.out.println("hello");3、返回Boolean类型@FunctionalInterface public interface Predicate<T> { /** * Evaluates this predicate on the given argument. * * @param t the input argument * @return {@code true} if the input argument matches the predicate, * otherwise {@code false} */ boolean test(T t);范例: //Predicate返回Boolean类型(判断类型) Predicate<Apple> colorPredicate = apple -> apple.getColor().equals("red"); Predicate<Apple> weightPredicate = apple -> apple.getWeight()==4;4、获取对象@FunctionalInterface public interface Supplier<T> { /** * Gets a result. * * @return a result */ T get(); }get(); } 范例: //Supplier获取对象 Supplier<Apple> appleSupplier = Apple::new;根据上面3种接口,返回不同参数类型,在不同地方选择使用。七、那些是FunctionInterface(函数式接口)1、除了default、static的方法外,只有一个方法的接口,就是funcationInteface @FunctionalInterface interface Adder{ int add(int a, int b); }2、没有方法,但继承了有一个方法的接口是funcationInterface @FunctionalInterface interface Empty extends Adder{ }不是函数式接口的1、继承后不止一个方法,因此不是funcationInterface interface SmartAdder extends Adder{ int add(Long a, Long b); }2、没有任何方法的接口,不是funcationInterface interface DoNothing{ }
2022年09月05日
261 阅读
0 评论
2 点赞
2022-05-10
Nginx配置优化
Nginx配置优化1、隐藏nginx版本信息#不显示nginx版本 server_tokens off2、Buffers缓存另一个很重要的参数为buffer,如果buffer太小,Nginx会不停的写一些临时文件,这样会导致磁盘不停的去读写。client_body_buffer_size 10K; client_header_buffer_size 1k; client_max_body_size 8m; large_client_header_buffers 2 1k;client_body_buffer_size:允许客户端请求的最大单个文件字节数client_header_buffer_size:用于设置客户端请求的Header头缓冲区大小,大部分情况1KB大小足够client_max_body_size:设置客户端能够上传的文件大小,默认为1mlarge_client_header_buffers:该指令用于设置客户端请求的Header头缓冲区大小3、开启Gzip压缩 #开启Gzip压缩 gzip on; #压缩等级 1-9 等级越高,压缩效果越好,节约宽带,但CPU消耗大 gzip_comp_level 2; #最小压缩文件大小 gzip_min_length 1000; #根据某些头部决定是否压缩, gzip_proxied expired no-cache no-store private auth; #压缩类型,默认就已经包含text/html,所以下面就不用再写了,写上去也不会有问题,但是会有一个warn。 gzip_types text/plain application/x-javascript text/xml text/css application/xml; #是否传输gzip压缩标志 gzip_vary on;4、开启高效传输模式 #开启高效传输模式。 sendfile on; #该指令必须在sendfile打开的状态下才会生效,主要是用来提升网络包的传输'效率' tcp_nopush on; #该指令必须在keep-alive连接开启的情况下才生效,来提高网络包传输的'实时性' tcp_nodelay on;5、FastCGI配置相关参数是为了改善网站的性能:减少资源占用,提高访问速度。 #为FastCGI缓存指定一个文件路径、目录结构等级、关键字区域存储时间和非活动删除时间。 fastcgi_cache_path /usr/local/nginx/fastcgi_cache levels=1:2 keys_zone=TEST:10m inactive=5m; #指定连接到后端FastCGI的超时时间。 fastcgi_connect_timeout 300; #指定向FastCGI传送请求的超时时间,这个值是已经完成两次握手后向FastCGI传送请求的超时时间。 fastcgi_send_timeout 300; #指定接收FastCGI应答的超时时间,这个值是已经完成两次握手后接收FastCGI应答的超时时间。 fastcgi_read_timeout 300; #用于指定读取FastCGI应答第一部分需要用多大的缓冲区,这个值表示将使用1个64KB的缓冲区读取应答的第一部分(应答头),可以设置为fastcgi_buffers选项指定的缓冲区大小。 fastcgi_buffer_size 64k; #指定本地需要用多少和多大的缓冲区来缓冲FastCGI的应答请求。如果一个PHP脚本所产生的页面大小为256KB,那么会为其分配4个64KB的缓冲区来缓存;如果页面大小大于256KB,那么大于256KB的部分会缓存到fastcgi_temp指定的路径中,但是这并不是好方法,因为内存中的数据处理速度要快于硬盘。一般这个值应该为站点中PHP脚本所产生的页面大小的中间值,如果站点大部分脚本所产生的页面大小为256KB,那么可以把这个值设置为“16 16k”、“4 64k”等。 fastcgi_buffers 4 64k; #默认值是fastcgi_buffers的两倍。 fastcgi_busy_buffers_size 128k; #表示在写入缓存文件时使用多大的数据块,默认值是fastcgi_buffers的两倍。 fastcgi_temp_file_write_size 128k; #表示开启FastCGI缓存并为其指定一个名称。开启缓存非常有用,可以有效降低CPU的负载,并且防止502错误的发生,但是开启缓存也会引起很多问题,要视具体情况而定。 fastcgi_cache TEST; #用来指定应答代码的缓存时间,实例中的值表示将200和302应答缓存一个小时,将301应答缓存1天,其他应答均缓存1分 fastcgi_cache_valid 200 302 1h; fastcgi_cache_valid 301 1d; fastcgi_cache_valid any 1m;6、超时配置 #客户端连接超时时间,单位是秒 keepalive_timeout 60; #客户端请求头读取超时时间 client_header_timeout 10; #设置客户端请求主体读取超时时间 client_body_timeout 10; #响应客户端超时时间 send_timeout 10;7、expires缓存配置 #对于图片,通常过期时间可以设置为一个月 location ~ \.(gif|jpg|jpeg|png|bmp|ico)$ { expires 30d; } #对js/css,通常过期时间设置为1周 location ~* \.(js|css)$ { expires 7d; }
2022年05月10日
671 阅读
0 评论
3 点赞
2022-05-09
Docker安装Jenkins自动部署SpringBoot项目
Docker安装Jenkins自动部署SpringBoot项目根据之前文章《使用Docker安装好Jenkins》为前提搭建好Jenkins,不明白请看https://www.yanxizhu.com/index.php/archives/138/。环境说明:jenkins为docker部署,Docker+Jenkins+Gitee+JDK11+Maven3.8.5。以后每次改动代码,push提交到giee码云后会自动部署,不用手动点击部署。一、全局工具配置【首页】-【系统管理】-【全局工具配置】我之前启动jenkins容器映射参数如下,根据自己映射路径自行修改。docker run -p 10240:8080 -p 10241:50000 --name jenkins \ -u root \ -v /mydata/jenkins_home:/var/jenkins_home \ -v /mydata/maven/apache-maven-3.8.5:/maven/apache-maven-3.8.5 \ -v /mydata/jdk/jdk-11.0.10/:/jdk/jdk-11.0.10 \ -v /mydata/maven/repo:/mydata/maven/repo \ -v /usr/bin/docker:/usr/bin/docker \ -v /var/run/docker.sock:/var/run/docker.sock \ -d jenkins/jenkins:lts上面很重要,注意。jdk配置jdk11路径/jdk/jdk-11.0.10maven配置maven3.8.5路径/maven/apache-maven-3.8.5git配置Default路径/usr/bin/gitdocker配置docker路径/usr/bin注意点:1、jenkins容器里面自带git,可通过命令查看路径。2、注意自己jdk、mavn、docker安装路径。查看jenkins自带git路径命令:which git二、插件安装【首页】-【系统管理】-【插件管理】插件1:Publish Over SSH插件2:Gitee Plugin如果插件安装慢,可以修改源,请参考修改方案,https://www.yanxizhu.com/index.php/archives/138/注意:如果在【全局工具配置】没有对应的选项,就是缺少相应插件。三、系统配置1、SSH remote hosts配置新增加配置ssh登陆凭证,此步骤的主要作用是jenkins 打包镜像后,能够远程去登陆和执行脚本文件。Hostname:xxx.xxx.xxx.x..(需要登陆的服务器ip)Port:22(ssh登陆端口)Credentials:登陆账号和密码(此处点击[添加]按钮增加一个)如果是本机可以不用配置2、Gitee 配置链接名:giteeGitee 域名 URL:https://gitee.com添加凭证Gitee API V5 的私人令牌(获取地址 https://gitee.com/profile/personal_access_tokens)通过上面连接创建一个令牌,然后添加到这里。四、准备项目1、本地新建一个SpringBoot项目,新建HellocerConller控制层package com.yanxizhu.jenkins.demo.controller; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RestController; /** * @description: Jenkins自动部署测试 * @author: <a href="mailto:batis@foxmail.com">清风</a> * @date: 2022/5/8 17:30 * @version: 1.0 */ @RestController public class HelloController { @GetMapping("/hello") public String hello(){ return "Hello World!"; } }本地启动项目确保通过127.0.0.1:8080/hello能够访问。2、编写Dockerfile# 指定是基于哪个基础镜像 FROM openjdk:11 # 作者信息 MAINTAINER batis # 挂载点声明 VOLUME /tmp # 将本地的一个文件或目录,拷贝到容器的文件或目录里 ADD /target/jenkins-demo-0.0.1-SNAPSHOT.jar springboot.jar #shell脚本 RUN bash -c 'touch /springboot.jar' # 将容器的8000端口暴露,给外部访问。 EXPOSE 8000 # 当容器运行起来时执行使用运行jar的指令 ENTRYPOINT ["java", "-jar", "springboot.jar"]注意:修改jdk版本、打包后名称、端口信息五、代码上传登录码云新建仓库,名字随意将代码关联并提交到码云。新建仓库、代码push自行google。六、WebHooks 管理配置1、打开仓库 -> 管理 -> 右侧的webhooksURL:填入服务器公网IP地址WebHook密码通过以下生成。七、部署SpringBoot项目1、新建部署任务任务名字随意、构建一个自由风格的软件项目。2、General描述随意填写,丢弃旧的构建策略,保持构建的天数1,保持构建的最大个数3,根据自己需要自行修改。3、源码管理选择gitRepository URL为自己gitee码云仓库地址。Credentials点击“添加”,Credentials凭证,选择通过用户名密码添加,id、备注可以为空。4、构建触发器其它默认:找到Gitee WebHook 密码,点击“生成按钮”生成,然后将该密码填入上面 “六、WebHooks 管理配置”中。轮询 SCM策略:* * * * *注意:*中间有空格,当您输入 "* * * * *" 时,意思为"每分钟"?也许您希望 "H * * * *" 每小时轮询。5、构建选择执行shell脚本#!/bin/bash -lex docker rm -f app_docker sleep 1 docker rmi -f app_docker:1.0 sleep 1 mvn clean install -Dmaven.test.skip=true sleep 1 docker build -t app_docker:1.0 -f ./src/main/Dockerfile . sleep 1 docker run -d -p 8000:8000 --name app_docker app_docker:1.0 注意自己端口名称。6、访问测试通过自己xxx.xxx.xx.xx:8000/hello即可自己写的helloword了。以后每次改动代码,push提交到giee码云后会自动部署,不用手动点击部署。7、问题记录及解决方案比如:1、查不到mvn、docker、jdk命令,可能是jenkins容器中环境配置问题,可以参考《Jenkins容器docker部署springboot项目-问题记录》2、如果开启了防火墙注意开发相应端口或关闭防火墙3、部署遇到问题,查看部署日志,以及google、baidu相关参考:Docker开启Remote API访问docker启动Jenkins报错Docker安装JenkinsNginx配置Jenkins二级域名,以及443 SSL证书访问Jenkins容器docker部署springboot项目-问题记录
2022年05月09日
533 阅读
0 评论
6 点赞
2022-05-09
Jenkins容器docker部署springboot项目-问题记录
Jenkins容器docker部署springboot项目-问题记录一、docker容器内不能使用vim解决方案:以root进入容器内docker exec -it -user root jenkins /bin/bash更新软件包apt-get update升级过程可能非常慢,因为是从海外站点拉取镜像,所以我们可以配置一个国内的镜像源,加速镜像拉取更新。备份原文件mv /etc/apt/sources.list /etc/apt/sources.list.bak查看容器中Debian版本cat /etc/issue修改配置sources.list文件根据自己版本修改成对应内容,修改内容参考阿里镜像https://developer.aliyun.com/mirror/debian我容器Debian为11.x版本,修改内容为:cat >/etc/apt/sources.list <<EOF deb http://mirrors.aliyun.com/debian/ bullseye main non-free contrib deb-src http://mirrors.aliyun.com/debian/ bullseye main non-free contrib deb http://mirrors.aliyun.com/debian-security/ bullseye-security main deb-src http://mirrors.aliyun.com/debian-security/ bullseye-security main deb http://mirrors.aliyun.com/debian/ bullseye-updates main non-free contrib deb-src http://mirrors.aliyun.com/debian/ bullseye-updates main non-free contrib deb http://mirrors.aliyun.com/debian/ bullseye-backports main non-free contrib deb-src http://mirrors.aliyun.com/debian/ bullseye-backports main non-free contrib EOF重新执行apt-get update安装vimapt-get install -y vim安装rpmapt-get install rpm -y二、docker容器内vim不能粘贴内容vim右键进入visual模式无法粘贴解决方案vim /usr/share/vim/vim80/defaults.vim修改内容:第70行,在mouse=a的=前面加个-,修改后如下:if has('mouse') set mouse-=a endif三、docker容器内环境配置修改环境变量配置vi /etc/profile新增jdk、mavn环境变量配置# java环境变量 export JAVA_HOME=/jdk/jdk-11.0.10 export JRE_HOME=$JAVA_HOME/jre export PATH=$JAVA_HOME/bin:$PATH export CLASSPATH=./:JAVA_HOME/lib:$JRE_HOME/lib # maven环境变量 export M2_HOME=/maven/apache-maven-3.8.5 export PATH=$PATH:$JAVA_HOME/bin:$M2_HOME/bin重新加载环境变量source /etc/profile检验是否配置成功java -version mvn -v
2022年05月09日
345 阅读
1 评论
4 点赞
2022-05-08
Docker安装Jenkins
Docker安装Jenkinsjdk安装下载jdk解压到个人安装目录/mydata/jdk/jdk-11.0.10maven安装下载maven解压到个人安装目录/mydata/maven/apache-maven-3.8.5修改mavne配置文件setting.xml,设置本地仓库目录<localRepository>/mydata/maven/repo</localRepository>添加阿里云镜像,在mirrors节点下增加以下内容<mirrors> <mirror> <id>alimaven</id> <mirrorOf>central</mirrorOf> <name>aliyun maven</name> <url>http://maven.aliyun.com/nexus/content/repositories/central/</url> </mirror> </mirrors>开启Docker Remote API关闭防火墙 或者 开启防火墙的端口#关闭防火墙 systemctl stop firewalld.service # 禁止firewall开机启动 systemctl disable firewalld.service # 或者允许固定端口 firewall-cmd --zone=public --add-port=2375/tcp --permanent firewall-cmd --reloadDocker环境下安装Jenkins拉取最新的Jenkins的docker镜像docker pull jenkins/jenkins:lts启动Jenkins容器 docker run -p 10240:8080 -p 10241:50000 --name jenkins \ -u root \ -v /mydata/jenkins_home:/var/jenkins_home \ -v /mydata/maven/apache-maven-3.8.5:/maven/apache-maven-3.8.5 \ -v /mydata/jdk/jdk-11.0.10/:/jdk/jdk-11.0.10 \ -v /mydata/maven/repo:/mydata/maven/repo \ -v /usr/bin/docker:/usr/bin/docker \ -v /var/run/docker.sock:/var/run/docker.sock \ -d jenkins/jenkins:lts注意:自己的目录和端口是否相同,不同请求修改。说明:挂载目录/mydata/jenkins_home为 jenkins 安装配置文件地址挂载目录/mydata/maven/apache-maven-3.8.5:/maven/apache-maven-3.8.5,需提前下载好本地maven解压到宿主机/mydata/maven/apache-maven-3.8.5:/maven/apache-maven-3.8.5目录挂载目录/mydata/jdk/jdk-11.0.10/为 宿主机本地jdk目录/mydata/jdk/jdk-11.0.10/,需提前下载解压到该目录挂载目录/mydata/maven/repo为后面需要用到的 maven 仓库地址-p 10240:8080 -p 10241:50000,端口映射,根据自己端口需求更改--name jenkins,容器名称遇到问题:iptables failed: iptables --wait -t nat -A DOCKER -p tcp -d 0/0 --dport 10241 -j DNAT --to-destination 172.17.0.5:50000 ! -i docker0: iptables: No chain/target/match by that name.解决方案:重启dockersystemctl restart docker查看 jenkins初始密码(第一次访问jenkins需要用到这个管理员密码)docker logs jenkins配置jenkins首次访问jenkins配置访问jenkins,自己ip加自己映射的端口,我这配置的是12.7.0.0.1:10240等待启动完成,会提示输入管理员密码。也就是上面看到的密码。输入日志里面获取的管理员密码。首次进入jenkins需要下载推荐插件,点击左边第一项【安装推荐的插件】。等待过程有点长,请耐心等待...等待插件下载完成后,进入下一步。创建一个管理员账号 admin / admin输入实例配置url:htttp://127.0.0.1:10240注意:如果插件安装失败,提示“无法连接到Jenkins”,关闭jenkins修改安装源。进入jenkins的工作目录,修改hudson.model.UpdateCenter.xml更改为:国内的清华大学的镜像地址。https://mirrors.tuna.tsinghua.edu.cn/jenkins/updates/update-center.json然后再重启jenkins稍等一会即可安装。
2022年05月08日
565 阅读
1 评论
3 点赞
1
...
6
7
8
...
21